
J
H
E
P
0
1
(
2
0
0
6
)
1
2
6

Published by Institute of Physics Publishing for SISSA

Received: October 26, 2005

Accepted: December 2, 2005

Published: January 20, 2006

Natural little hierarchy from a partially goldstone twin

Higgs

Zackaria Chacko,a Yasunori Nomura,bc Michele Papuccibc and Gilad Perezc

aDepartment of Physics, University of Arizona

Tucson, AZ 85721, U.S.A.
bDepartment of Physics, University of California

Berkeley, CA 94720, U.S.A.
cTheoretical Physics Group, Lawrence Berkeley National Laboratory

Berkeley, CA 94720, U.S.A.

E-mail: zchacko@physics.arizona.edu, YNomura@lbl.gov, papucci@berkeley.edu,

gperez@lbl.gov

Abstract: We construct a simple theory in which the fine-tuning of the standard model

is significantly reduced. Radiative corrections to the quadratic part of the scalar potential

are constrained to be symmetric under a global U(4)×U(4)′ symmetry due to a discrete Z2

“twin” parity, while the quartic part does not possess this symmetry. As a consequence,

when the global symmetry is broken the Higgs fields emerge as light pseudo-Goldstone

bosons, but with sizable quartic self-interactions. This structure allows the cutoff scale, Λ,

to be raised to the multi-TeV region without significant fine-tuning. In the minimal version

of the theory, the amount of fine-tuning is about 15% for Λ = 5TeV, while it is about 30%

in an extended model. This provides a solution to the little hierarchy problem. In the

minimal model, the “visible” particle content is exactly that of the two Higgs doublet

standard model, while the extended model also contains extra vector-like fermions with

masses ≈ (1 ∼ 2)TeV. At the LHC, our minimal model may appear exactly as the two

Higgs doublet standard model, and new physics responsible for cutting off the divergences

of the Higgs mass-squared parameter may not be discovered. Several possible processes

that may be used to discriminate our model from the simple two Higgs doublet model are

discussed for the LHC and for a linear collider.
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1. Introduction

Despite its tremendous phenomenological success, the standard model is an incomplete

theory. In the standard model, the Higgs mass-squared parameter receives radiative cor-

rections of order the cutoff scale squared, implying the existence of some new physics at

a scale not much larger than the scale of electroweak symmetry breaking. On the other

hand, experiments have not found any convincing sign of such physics so far: the scale

suppressing nonrenormalizable operators must be larger than several TeV. This suggests

that the new physics must cut off the corrections to the Higgs mass-squared parameter

without much affecting the other sectors of the standard model. What is this new physics

and how can we find it?

An interesting idea to control radiative corrections to the Higgs potential is to consider

it to be the pseudo-Goldstone boson (PGB) of some broken global symmetry [1]. The actual

implementation of this idea, however, is not so simple. The Higgs potential possesses a

global symmetry at tree level, which is explicitly broken by the electroweak gauge and

Yukawa interactions. These explicit breakings then generate the potential for the Higgs

field h at loop level. This itself, however, does not help much because the generated Higgs

mass-squared parameter m2
h is of order LΛ2, where Λ is the cutoff and L is the one-loop

factor: L ≈ g2C/16π2 or y2N/16π2 with g and y gauge and Yukawa couplings and C

and N multiplicity factors. We have just dropped the tree-level m2
h term in the standard

model simply by declaring that the Higgs is a PGB. Some progress, however, can be made

if we control radiative corrections from gauge and Yukawa interactions either by breaking

symmetry collectively [2], by making the size of the gauge group generating the PGB Higgs

large and thus separating the momentum cutoff scale from the cutoff of the theory [3], or
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by using a discrete symmetry [4]. In these cases, the correction to m2
h can be cut off

below the real cutoff of the theory Λ, so that we can have a perturbative theory describing

physics above the naive one-loop cutoff scale of the standard model. The question for the

consistency with the data can then be addressed by studying this perturbative physics.

A generic problem for these classes of theories is that since the generated Higgs po-

tential is a function of cos(h/f) and sin(h/f), where f is the decay constant for the PGB

Higgs, the vacuum expectation value (VEV) of h is naively of order f : 〈h〉 ≈ f . This is

not good because the cutoff scale Λ is then, at most, of order 4πf ≈ 2 TeV, so that it does

not help to understand why the deviations from the standard model are experimentally so

small. There are essentially two ways to evade this problem. One is to invoke a cancellation

in the quadratic term in the Higgs potential. The one-loop potential for the PGB Higgs is

schematically written as V (h) = L(−η2f
2|h|2 + η4|h|4/2 − η6|h|6/6f2 + · · ·), where η’s are

naturally of O(1). Then, if the coefficient η2 is somehow small, for example due to a cancel-

lation between gauge and Yukawa contributions, or if we add an additional term of the form

δV (h) = µ2|h|2 such that µ2 ≈ η2f
2L, we can obtain 〈h〉 ¿ f and push up the cutoff scale

Λ to be larger than 2 TeV. The other possibility is to introduce an extra quartic coupling,

δV (h) = λ|h|4/2. This would be interesting because we may then obtain 〈h〉 ≈ fL1/2 ¿ f

for λ = O(1), so that the cutoff may be pushed up to Λ ≈ 〈h〉/L À 2 TeV without un-

natural cancellations. The problem is that such a quartic coupling also gives a correction

to the Higgs mass-squared parameter. If we set the cutoff to be Λ ≈ 4πf , the correction

is of order δm2
h ≈ (λ/16π2)Λ2 ≈ λ2f2, which is much larger than the corresponding term

in the original potential V (h). In order to make this possibility work, therefore, we need

some mechanism controlling this correction. One such mechanism is collective symmetry

breaking in little Higgs theories. Implementing it in realistic theories, however, generically

requires some non-trivial model building efforts [2, 5]. Moreover, the constraints from the

precision electroweak data are often quite severe [6], requiring a further ingredient, such as

T parity [7], to make the models fully viable.

In this paper, we construct a theory which addresses the issues described above. An

important ingredient for this construction is the discrete Z2 “twin” symmetry relating the

standard-model fields with their mirror partners. It has recently been shown in [4] that

this symmetry can be used to control divergences from the gauge and Yukawa couplings in

PGB Higgs theories. Using this “twin Higgs” mechanism, we can construct a simple theory

which naturally realizes electroweak symmetry breaking. We show that by introducing an

operator that explicitly violates the global symmetry but still preserves the Z2 symmetry,

we can generate an order-one quartic coupling in the Higgs potential without giving a

quadratically divergent contribution to the Higgs mass-squared parameter. This allows us

to push up the cutoff scale to the multi-TeV region without significant fine-tuning, and thus

to solve the little hierarchy problem implied by the mismatch between the stability of the

electroweak scale and the constraints from experiments [8]. With an extended top quark

sector and a mild tuning of order 10%, this basic framework allows the cutoff scale as high

as about 8 TeV. We assume that our theory is weakly coupled at the cutoff scale, although

it may be possible to extend it to the strongly coupled case. An interesting aspect of

the model is that the scalar potential does not possess any approximate continuous global
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symmetry. The global symmetry is explicitly broken by an O(1) amount by a dimensionless

quartic coupling. The gauge and Yukawa interactions also break the symmetry by an O(1)

amount. Nevertheless, the quadratic terms in the scalar potential possess an enhanced

global symmetry, guaranteed by the discrete Z2 “twin” symmetry, and this partial global

symmetry is sufficient to achieve our goals. The theory has two Higgs doublets, whose

couplings to matter fields can take either a Type-I, Type-II or mixed form.

The minimal version of our theory may lead to a potentially embarrassing situation at

the LHC. While the theory does not have significant fine-tuning in electroweak symmetry

breaking, the LHC may just see the (two Higgs doublet) standard model, and may not

find any new physics responsible for cutting off the divergences of the Higgs mass-squared

parameter. This is because divergences in the Higgs mass-squared parameter due to the

standard model fields are canceled by fields that are singlet under the standard model

gauge group. The deviations from the simple two Higgs doublet model due to these singlet

fields can be very small at the LHC. The deviations, however, may show up at a linear

collider. This demonstrates that it may be too early to give up the concept of naturalness

even if the LHC does not find any new physics associated with the cancellation of the Higgs

mass divergences. Precision Higgs studies at a linear collider may be necessary before any

firm conclusion can be drawn.

In a version of the theory in which the top quark sector is extended and the amount

of fine-tuning is further reduced, we will find new strongly interacting vector-like fermions

at the LHC, which are responsible for cutting off the radiative correction to the Higgs

mass-squared parameter from the top quark. These particles, however, may be the only

new particle we will find at the LHC beyond the two Higgs doublets, because all the other

divergences in the standard model can be canceled by fields which are singlet under the

standard model gauge group.

The organization of the paper is as follows. In the next section we describe the basic

structure of our theory. In section 3 we calculate radiative corrections to the Higgs potential

and show that the cutoff scale can be pushed up to the multi-TeV region without significant

fine-tuning. In section 4 we extend our minimal model so that it allows a smaller fine-tuning

and/or larger cutoff scale. We find that the cutoff scale can be raised up to about 8 TeV

with a mild tuning of order 10%. In section 5 we discuss the possibility of making the

theory strongly coupled at Λ. Phenomenology of the model is discussed in section 6, and

conclusions are given in section 7.

2. Minimal theory

We consider that our theory is an effective field theory describing physics below the cutoff

scale Λ, which is given by specifying the lagrangian at the scale Λ. We assume that the

theory is weakly coupled at Λ, and that radiative corrections to the Higgs mass-squared

parameter (at least power divergent ones) are cut off at this scale. We do not need to

specify physics above Λ for the present purpose. As we will see later, the scale Λ in our

theory can be in the multi-TeV region without significant fine-tuning.
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Let us consider two scalar fields Φ and Φ′ that transform as fundamental four-dimen-

sional representations under global U(4) and U(4)′ symmetries, respectively. We assume

that the tree-level potential for Φ and Φ′ drive non-zero VEVs for Φ and Φ′, breaking

U(4) → U(3) and U(4)′ → U(3)′, respectively. The U(4) × U(4)′ invariant lagrangian

causing such a breaking pattern is1

L = −η(|Φ|2 − f2)2 − η′(|Φ′|2 − f ′2)2. (2.1)

What are the sizes for η, η′, f and f ′? We take η ∼ η′ = O(1) because the theory is assumed

to be weakly coupled at the scale Λ. For f and f ′, we take them to be somewhat smaller

than the cutoff scale Λ: f ∼ f ′ = O(Λ/4π). This is crucial to achieve our goal of raising

the cutoff, as will become clear later. These values of f and f ′ are stable under radiative

corrections, i.e. technically natural. They may naturally arise if Φ and Φ′ themselves are

PGBs of some larger global group, say those of U(5) × U(5)′ → U(4) × U(4)′, but here we

simply take f ∼ f ′ ∼ Λ/4π without specifying their origin.

We denote the upper and lower halfs of the Φ (Φ′) field as HA and HB (H ′
A and H ′

B),

respectively. When Φ and Φ′ develop VEVs

〈Φ〉 =

〈(

HA

HB

)〉

=











0

0

0

f











, 〈Φ′〉 =

〈(

H ′
A

H ′
B

)〉

=











0

0

f ′

0











, (2.2)

14 Goldstone bosons appear associated with the breaking U(4) × U(4)′ → U(3) × U(3)′.

Now, we gauge the SU(2)A × U(1)A × SU(2)B × U(1)B subgroup of U(4) × U(4)′. Here,

SU(2)A×U(1)A acts on the upper half components of Φ and Φ′ such that both HA and H ′
A

have the quantum numbers of 2−1/2, while SU(2)B ×U(1)B on the lower half components

of Φ and Φ′ such that HB and H ′
B transform as 2−1/2. This gauging explicitly breaks

the U(4) × U(4)′ global symmetry. Under SU(2)A × U(1)A, 14 Goldstone bosons — now

pseudo-Goldstone bosons (PGBs) — transform as two 2−1/2’s and six 10’s. We identify

SU(2)A × U(1)A as SU(2)L × U(1)Y of the standard model. We then find that we can

obtain two Higgs doublets as PGBs from this symmetry breaking pattern. The stability of

the particular form of the VEVs in eq. (2.2) will be discussed later.

In what sense are the 14 states PGBs? Since the theory is weakly coupled and the gaug-

ing of SU(2)A×U(1)A×SU(2)B×U(1)B explicitly breaks the global U(4)×U(4)′ symmetry

by an O(1) amount, the theory does not possess an approximate U(4) × U(4)′. However,

as we will see below, radiative corrections from gauge interactions approximately preserve

the U(4) × U(4)′ form of the scalar potential, if the discrete Z2 symmetry interchanging

SU(2)A and SU(2)B , and U(1)A and U(1)B , is introduced. In this case, U(4)×U(4)′ break-

ing effects in the scalar potential is of order 1/16π2, and we can still call the 14 states

PGBs.

We now impose the Z2 symmetry which interchanges the A and B sectors, i.e. HA and

HB , H ′
A and H ′

B, and the gauge bosons of SU(2)A and SU(2)B , and U(1)A and U(1)B . This

1Precisely speaking, the symmetry breaking pattern described by eq. (2.1) is O(8)×O(8)′ → O(7)×O(7)′,

but the existence of these larger symmetries does not affect any of our argument below.
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requires the gauge couplings of SU(2)A and SU(2)B to be equal, gA = gB = g, as well as

those of U(1)A and U(1)B , g′A = g′B = g′. An important consequence of this Z2 symmetry

is that quadratic divergences from gauge loops to the squared-mass parameters for the

PGB Higgs bosons are completely eliminated [4]. This is because quadratic divergences

appear only in the coefficients of the operators quadratic in fields: δV = Λ2(cA|HA|2 +

cB |HB |2+c′A|H ′
A|2+c′B|H ′

B |2), where cA, cB , c′A and c′B are numbers. (Operators of the form

H†
AH ′

A+h.c. and H†
BH ′

B+h.c. can be forbidden by imposing a U(1)×U(1)′ global symmetry;

see discussion later.) Since the Z2 symmetry always guarantees that cA and cB , and c′A and

c′B , are equal, quadratically divergent radiative corrections necessarily take the U(4)×U(4)′

invariant form: δV = cAΛ2(|HA|2 + |HB|2)+ c′AΛ2(|H ′
A|2 + |H ′

B|2) = cAΛ2|Φ|2 + c′AΛ2|Φ′|2,
which do not give any potential for the PGBs. In fact, one can explicitly check in a non-

linear sigma model that if the gauge couplings of SU(2)A and SU(2)B , and U(1)A and

U(1)B , are the same as dictated by the Z2 symmetry, quadratically divergent contributions

to the PGB potential are absent. The potential for the PGB Higgs arises from operators

of the form

δV = ξ(|HA|4 + |HB |4) + ξ′(|H ′
A|4 + |H ′

B |4) + · · · , (2.3)

which are Z2 invariant but not U(4) × U ′(4) invariant. It is then clear from dimensional

analysis that the potential for the PGBs is at most logarithmically divergent.2 The sizes

of the coefficients ξ and ξ′ in eq. (2.3) are of order (g2/16π2) ln(Λ/f), so that the PGB

Higgses receive squared masses only of order (g2f2/16π2) ln(Λ/f).

The situation for the Yukawa interactions is similar. If we make the Yukawa couplings

Z2 invariant by introducing mirror quarks, quadratically divergent radiative corrections to

the squared masses for the PGB Higgses are eliminated. For example, for the top quarks we

introduce mirror quarks q̂ and ˆ̄u, which are singlet under SU(2)L ×U(1)Y and transform as

21/6 and 1−2/3 under SU(2)B ×U(1)B , in addition to our quarks q and ū, which transform

as 21/6 and 1−2/3 under SU(2)L ×U(1)Y and are singlet under SU(2)B ×U(1)B . For color

interactions, we assume that our quarks and mirror quarks are charged under SU(3)A and

SU(3)B gauge interactions, respectively, where SU(3)A is identified as the standard model

color group: SU(3)A ≡ SU(3)C . Writing the Z2-invariant Yukawa coupling

Ltop = yt(qūH†
A + q̂ˆ̄uH†

B), (2.4)

the PGBs do not receive any quadratically divergent contributions from this coupling. Here,

we couple only Φ = (HA|HB) to the top quarks, and not Φ′ = (H ′
A|H ′

B). Such a situation

can be easily arranged, for example, by considering that the U(1) × U(1)′ subgroup of

the U(4)×U(4)′ global symmetry is an exact (anomalous) global symmetry and assigning

appropriate charges to the quark fields. The symmetry U(1)×U(1)′ will also be discussed

later when we introduce an explicit U(4)×U(4)′ breaking operator in the scalar potential.

There are two ways to introduce the bottom Yukawa coupling into the theory, without

introducing dangerous flavor changing neutral currents. One way is to couple only Φ =

2Radiative corrections involving higher dimension operators can, of course, generate power divergent

corrections to the PGB potential, but they are sufficiently small if the theory is weakly coupled at Λ.
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(HA|HB) to the bottom quarks:

Lbottom = yb(qd̄HA + q̂ˆ̄dHB), (2.5)

where d̄ is the right-handed bottom quark transforming as 11/3 under SU(2)L ×U(1)Y and

singlet under SU(2)B × U(1)B , while ˆ̄d is its mirror partner transforming as 11/3 under

SU(2)B × U(1)B and singlet under SU(2)L × U(1)L. The other way is to couple only

Φ′ = (H ′
A|H ′

B) to the bottom quarks:

Lbottom = yb(qd̄H ′
A + q̂ˆ̄dH ′

B). (2.6)

Since our two PGB-Higgs doublets essentially come from HA and H ′
A, the two cases of

eqs. (2.5) and (2.6) lead, respectively, to Type-I and Type-II Higgs doublet theories. The

Yukawa couplings for lighter quarks can be obtained by making yt and yb to 3×3 matrices.

The Yukawa couplings for leptons are introduced analogously to the down-type quarks,

but the choice between eqs. (2.5) and (2.6) can be made independently from that for the

down-type quarks. The particular form of the couplings in eq. (2.5) or (2.6) can, again,

be ensured by considering that the U(1) × U(1)′ subgroup of U(4) × U(4)′ is exact and

by assigning appropriate U(1) × U(1)′ charges to q, d̄, q̂ and ˆ̄d (and to the corresponding

lepton fields).

With these structures for gauge and Yukawa interactions, radiative corrections to the

squared masses for the PGB Higgses can be made small to the level of O((f2/16π2) ln(Λ/f)).

This itself, however, does not achieve our goal of naturally raising the cutoff Λ to the multi-

TeV region. Since our Higgs fields, h, are PGBs, their potential generated by gauge and

Yukawa interactions is a function of cos(h/f) and sin(h/f), giving 〈h〉 ≈ f ≈ 200 GeV.

This in turn implies Λ . 4πf ≈ 2 TeV. The source of the problem is that while the Higgs

mass-squared parameters are suppressed to the level of O((f2/16π2) ln(Λ/f)), the quartic

couplings are also suppressed and of order O((1/16π2) ln(Λ/f)). Moreover, the stability of

the particular form of the VEVs in eq. (2.2) is not obvious at this stage, without a detailed

study of the PGB potential generated at loop level.

We now present a mechanism addressing these issues and present a realistic theory in

which Λ can be raised to the multi-TeV region without a significant fine-tuning. Suppose

we introduce a tree-level operator

LH = −λ(|H†
AH ′

A|2 + |H†
BH ′

B|2), (2.7)

which explicitly violates the global U(4)×U(4)′ symmetry but preserves the Z2 symmetry.

We take the coupling λ to be of O(1). We then find that the operator of eq. (2.7) gives an

order-one quartic coupling for the two PGB-Higgs doublets without giving large squared

masses, and at the same time stabilizes the desired vacuum of eq. (2.2). To see this

explicitly, we expand the Φ and Φ′ fields as

Φ =

(

HA

HB

)

= exp











i

f











0 0 0 h1

0 0 0 h2

0 0 0 a+ib√
2

h†
1 h†

2
a−ib√

2
c√
2































0

0

0

f











, (2.8)
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and

Φ′ =

(

H ′
A

H ′
B

)

= exp











i

f ′











0 0 h′
1 0

0 0 h′
2 0

h′†
1 h′†

2
c′√
2

a′−ib′√
2

0 0 a′+ib′√
2

0































0

0

f ′

0











, (2.9)

respectively, where h = (h1, h2) and h′ = (h′
1, h

′
2) are the two PGB Higgs doublets, and a,

b, c, a′, b′ and c′ are the six singlet PGBs, of the spontaneous U(4)×U(4)′ → U(3)×U(3)′

breaking. Here the PGB fields are canonically normalized, and we have neglected the radial

excitation modes of Φ and Φ′. Substituting eqs. (2.8), (2.9) into eq. (2.7), we obtain

V = −LH = λ|h†h′|2 +
1

2
λ(f2 + f ′2)(ã2 + b̃2) + · · · , (2.10)

where ã ≡ (f ′a−fa′)/
√

f2 + f ′2 and b̃ ≡ (f ′b+fb′)/
√

f2 + f ′2 are canonically normalized

singlet PGBs that are not eaten by the massive SU(2)B ×U(1)B gauge bosons. (The eaten

modes are (fa + f ′a′)/
√

f2 + f ′2, (fb − f ′b′)/
√

f2 + f ′2, c and c′.) This explicitly shows

that for λ > 0 the operator of eq. (2.7) gives a quartic coupling λ to the two PGB-Higgs

doublets, h and h′, and the vacuum of eq. (2.2) is stabilized by the masses of ã and b̃,

m2
ã = m2

b̃
= λ(f2 + f ′2) > 0. A similar operator has also been used in little Higgs theories

to obtain a tree-level quartic coupling [9].

An interesting point here is that while the operator of eq. (2.7) introduces an order-one

explicit breaking of the global U(4)×U(4)′ symmetry to the scalar potential (and hence the

O(f) masses for ã and b̃), the Higgs doublets do not obtain masses of order f . The masses

are generated at loop level, but because of Z2 invariance they are generated only through

quartic couplings between H’s, such as the ones in eq. (2.3). The coefficients of these

operators, e.g. ξ and ξ′ in eq. (2.3), are at most of order (1/16π2) ln(Λ/f), since they are

generated at loop level and the theory is weakly coupled.3 This guarantees that radiatively

generated Higgs squared masses cannot be larger than of order (f2/16π2) ln(Λ/f). We

note here that our 14 states are no longer “PGBs” in the usual sense, since the potential as

a whole does not possess an approximate U(4) × U(4)′ symmetry: it is broken by an O(1)

amount by λ. What ensures the stability of the potential here under radiative corrections

from explicit symmetry breaking interactions is the “partial U(4) × U(4)′ symmetry” —

U(4)×U(4)′ possessed only by the quadratic terms of the scalar potential, which arises as

a consequence of the discrete Z2 symmetry of the theory.

It is technically natural to introduce only the operator of eq. (2.7) as an O(1) U(4) ×
U(4)′-violating effect in the scalar potential. Other U(4) × U(4)′-violating terms are gen-

erated at loop level, but they are at most of order 1/16π2. In fact, this particular explicit

symmetry breaking pattern may be justified by assuming certain structure for the ultra-

violet theory above Λ. Imagine, for example, that the operator of eq. (2.7) is generated

by tree-level exchanges of auxiliary scalar fields that have Z2 × U(1) × U(1)′ invariant

3The argument here shows that the theory could potentially have a problem if it is strongly coupled e.g.

η ∼ η′ ∼ 4π, because then the coefficients ξ and ξ′ may receive corrections of order e.g. ηλ/16π2, ηg2/16π2 ∼

1, giving the Higgs squared masses of order f2, which would be too large for our purpose [10]. We will

discuss this issue in section 5.
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trilinear couplings between primed, non-primed and the auxiliary fields. Then, the only

U(4)×U(4)′-violating operators generated at tree level are the one in eq. (2.7) and an op-

erator H†
AH ′

AHBH ′†
B + h.c. We find that the existence of the latter operator with an O(1)

coefficient does not change any of the basic aspects of the model. This operator, however,

can also be forbidden if we impose a discrete Z2 “chiral” symmetry: (HA|HB) ↔ (HA|HB)

and (H ′
A|H ′

B) ↔ (H ′
A|−H ′

B). Below we impose this Z2 symmetry and set the coefficient of

the above operator to be zero for simplicity. We also impose the U(1)×U(1)′ ⊂ U(4)×U(4)′

symmetry as an exact (anomalous) global symmetry of the model. This suppresses the op-

erator Φ†Φ′ + h.c., whose coefficient must be of order f2 or smaller since otherwise some

of the modes needed to cancel quadratic divergences to the Higgs squared masses become

too heavy.

Summarizing so far, the lagrangian of our theory is given by the scalar potential of

eqs. (2.1), (2.7) and the Yukawa couplings of either eqs. (2.4), (2.5) or eqs. (2.4), (2.6). At

scales below f , the theory contains the standard model quarks and leptons as well as the

two Higgs doublets, h and h′, which have the following dimensionless couplings:

L = ytqūh† + ybqd̄h(′) + yτ lēh
(′) − V (h, h′), (2.11)

where l and ē are the doublet and singlet lepton fields, respectively, and the Higgs potential

V (h, h′) contains the tree-level quartic coupling λ|h†h′|2 as well as radiatively generated

Higgs mass-squared parameters of order (f2/16π2) ln(Λ/f). The Higgs field to which the

down-type quarks and charged leptons couple can be either h or h′, depending on their

U(1)×U(1)′ charges, and the choice can be made independently for the down-type quarks

and charged leptons (if there is no quark-lepton unification in the fundamental theory).

Because of the particular form of the Higgs quartic coupling arising from the operator

of eq. (2.7), λ|h†h′|2, the squared mass parameters for h and h′ must both be positive to

ensure the absence of a runaway direction in the potential. Electroweak symmetry breaking

then must be caused by the term h†h′ +h.c., by making one of the eigenvalues in the Higgs

mass-squared matrix negative. We assume that these mass terms are generated by soft

Z2-symmetry breaking operators

Lsoft = −µ2|HA|2 − µ′2|H ′
A|2 + (bH†

AH ′
A + h.c.), (2.12)

where we take parameters µ2, µ′2 and b to be of order (f2/16π2) ln(Λ/f), which is techni-

cally natural. The Higgs potential V (h, h′) is then given by

V (h, h′) = m2|h|2 + m′2|h′|2 − (b h†h′ + h.c.) + λ|h†h′|2, (2.13)

where m2 and m′2 are given at tree level by µ2 and µ′2, respectively, but they also receive

radiative corrections of order (f2/16π2) ln(Λ/f). Here, we have suppressed radiatively

generated quartic terms as well as higher order terms. The conditions for having the stable

minimum breaking the electroweak symmetry are

m2 > 0, m′2 > 0, |b|2 > m2m′2. (2.14)
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With these conditions satisfied, we expect to obtain the desired hierarchy

Λ ≈ 4πf ≈ (4π)2v, (2.15)

without a significant fine-tuning, where v ≡ (〈h〉2 + 〈h′〉2)1/2 ' 174 GeV. To reliably esti-

mate how large we can make Λ without fine-tuning, however, we need to calculate radiative

correction to m2 and m′2 from top-Yukawa, gauge and Higgs-quartic interactions, and care-

fully study fine-tuning required to obtain successful electroweak symmetry breaking. This

will be performed in the next section, where we find that the estimate of eq. (2.15) is

somewhat too optimistic.

3. Analysis of fine-tuning

Since radiative corrections to the Higgs mass squared parameters in our theory come only

from the quartic terms in the scalar potential, we can reliably estimate their sizes at the

leading-log level. Specifically, given the lagrangian of eqs. (2.1), (2.4), (2.7), we can evaluate

the coefficients of U(4) × U(4)′-violating operators

L = −ξ(|HA|4 + |HB |4) − ξ′(|H ′
A|4 + |H ′

B |4) − κ(|HA|2|H ′
A|2 + |HB|2|H ′

B|2), (3.1)

that give masses for the Higgs doublets, where we have kept only operators that preserve

U(1) × U(1)′ and the “chiral” Z2 symmetry. We can then obtain expressions for radiative

corrections to the Higgs mass-squared parameters in terms of the renormalized f and f ′

parameters. This determines how large we can make f and f ′ without severe fine-tuning,

which in turn determines how large the cutoff scale Λ can be. In our analysis we assume

either that down-type quarks and leptons couple to h or that the ratio 〈h〉/〈h′〉 is not very

large, so that only the relevant Yukawa coupling is the top Yukawa coupling. An extension

to include the bottom and tau Yukawa couplings, however, is straightforward.

At the one-loop leading-log level, the coefficients ξ, ξ′ and κ in eq. (3.1) receive the

following radiative corrections:

δξ =
1

16π2

(

6y4
t − 9

8
g4 − 3

4
g2g′2 − 3

8
g′4 − λ2

)

ln
Λ

f
, (3.2)

δξ′ =
1

16π2

(

−9

8
g4 − 3

4
g2g′2 − 3

8
g′4 − λ2

)

ln
Λ

f
, (3.3)

δκ =
1

16π2

(

−9

4
g4 +

3

2
g2g′2 − 3

4
g′4 − 2λ2

)

ln
Λ

f
, (3.4)

where yt is the top Yukawa coupling in eq. (2.4), η, η′ and λ are couplings in eqs. (2.1),

(2.7), g is the Z2 invariant gauge coupling of SU(2)A ≡ SU(2)L and SU(2)B , and g′ that

of U(1)A ≡ U(1)Y and U(1)B . The finite pieces depend on the unknown ultraviolet theory

and do not have a real physical meaning in the effective theory. From these equations, we

obtain the expressions for the corrections to the Higgs mass-squared parameters m2, m′2

and b in eq. (2.13):

δm2 = −2f2 δξ − f ′2 δκ, (3.5)

δm′2 = −2f ′2 δξ′ − f2 δκ, (3.6)

δb = 0, (3.7)
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which are of order (f2/16π2) ln(Λ/f). Contributions arising from renormalizations of the

µ2 and µ′2 parameters in eq. (2.12) are of order (f2/(16π2)2) ln(Λ/f) and thus negligible.

What is the amount of fine-tuning for this potential? Let us first see that the fine-

tuning parameter ∆−1 can be represented in terms of the lagrangian parameters and/or

physical Higgs boson masses in the following way [11]. The equations determining the

minimum of the potential, eq. (2.13), can be written as

tan2β =
m′2

m2
, (3.8)

λv2 =
2b

sin 2β
− (m2 + m′2), (3.9)

where tan β ≡ 〈h〉/〈h′〉 and v ≡ (〈h〉2 + 〈h′〉2)1/2 ' 174 GeV is the electroweak scale. We

then find that the only source of a potential unnatural cancellation is in the right-hand-side

of eq. (3.9), and that the fine-tuning parameter ∆−1 is approximately given by the ratio

of λv2 and m2 + m′2 (or 2b/ sin 2β): ∆−1 ≈ λv2/(m2 + m′2). (Note that m2 and m′2 are

both positive, so that they cannot be canceled with each other.) On the other hand, the

masses of the physical Higgs bosons are given by

m2
A0 = m2 + m′2 + λv2, (3.10)

m2
H± = m2 + m′2, (3.11)

m2
H0,h0 =

1

2

{

m2
A0 ±

√

m4
A0 cos22β + (m2

A0 − 2λv2)2 sin22β
}

, (3.12)

where A0, H±, H0, and h0 represent the pseudoscalar, charged, heavier neutral, and lighter

neutral Higgs bosons, respectively. Assuming that the lighter neutral Higgs boson h0 is

somewhat lighter than the other Higgs bosons, we obtain

m2
H0 ' m2

A0 = m2 + m′2 + λv2, (3.13)

m2
H± = m2 + m′2, (3.14)

m2
h0 ' λv2 sin22β. (3.15)

The fine-tuning parameter can then be written as

∆−1 ≈ λv2

m2 + m′2 ' m2
h0

m2
H± sin22β

. (3.16)

For tan β not much larger than 1, e.g. tan β . 2, this simplifies further to ∆−1 ∼ m2
h0/m

2
H± .

We now estimate how high we can push up the cutoff scale Λ. Here we assume f ' f ′

for simplicity. First, we rewrite eq. (3.16) using eqs. (3.8), (3.15) as ∆−1 ' λv2/((1 +

tan2β)m2) ' m2
h0/(4m

2 sin2β). The parameter m2 receives contributions both at tree

level, m2|tree = µ2, and at radiative level, δm2 in eq. (3.5). In order to avoid unnatural

cancellations among these contributions, m2 itself must be at least of the same size as the

largest radiative contribution. For f ' f ′, the largest one comes either from the top loop

contribution:

δm2|top = − 3y4
t

4π2
f2 ln

Λ

f
, (3.17)
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where we have used eqs. (3.2), (3.5), or from the Higgs quartic contribution:

δm2|H4 =
λ2

8π2
(f2 + f ′2) ln

Λ

f
, (3.18)

where we have used eqs. (3.2), (3.4), (3.5). Now, setting m2 ≈ |δm2|top| and using mt =

ytv sin β, the contribution to the fine-tuning parameter from top loop can be written as:

∆−1|top ≡ m2
h0

4|δm2|top| sin2β
≈ π2v4m2

h0 sin2β

3m4
t f

2 ln(Λ/f)
' 2

m2
h0 sin2β

f2
, (3.19)

where we have used mt = mt|pole(1 + g2
3/3π

2)−1 ' 166 GeV and ln(Λ/f) ' ln(2π) in the

last equation (see below). The contribution from quartic loop, on the other hand, can be

written using eq. (3.15) as

∆−1|H4 ≡ m2
h0

4δm2|H4 sin2β
≈ 32π2v4 sin2β cos4β

m2
h0(f2 + f ′2) ln(Λ/f)

' sin2β cos4β

m2
h0f2

(530 GeV)4, (3.20)

where we have set f = f ′ in the last equation. The fine-tuning parameter ∆−1 is then

given by

∆−1 = min
{

∆−1|top, ∆−1|H4

}

. (3.21)

From eqs. (3.19), (3.20), (3.21), we find that a maximum value for ∆−1 is obtained

for m2
h0 ' (530 GeV)2 cos2β /

√
2, with the value ∆−1 ' (320 GeV/f)2 sin22β. Under the

constraint from precision electroweak measurements, mh0 . 250 GeV [12], this occurs when

mh0 ' 250 GeV and tan β ' 1.5, and the largest value of f for a fixed ∆−1 is given by

fmax ≈ 650 GeV

(

20%

∆−1

)1/2

. (3.22)

(This value can also be reproduced by taking a complete one-loop effective potential into

account and seeing the sensitivity of v2 with respect to the parameter b.) The relation

between Λ and f is not calculable because f2 receives quadratically divergent radiative

corrections proportional to Λ2. The relation, however, can be estimated using a naive

scaling argument:

f2 ≈ Nf

16π2
Λ2, (3.23)

where Nf is the number of “flavors”, which is 4 in our case. For η & 1, this relation roughly

agrees with the result obtained naively by calculating the coefficient of the quadratic di-

vergence of f2 in the effective theory. For smaller η, the hierarchy between Λ and f may

be smaller because of the top Yukawa contribution to the Φ mass term. From eqs. (3.22),

(3.23) we obtain the maximum value of the cutoff:

Λmax ≈ 4 TeV

(

20%

∆−1

)1/2

. (3.24)
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To evade the experimental constraints from higher dimension operators we need to have

Λ & 5 TeV.4 Our theory requires (only) a mild fine-tuning of about

∆−1 ≈ 14%

(

5 TeV

Λ

)2

, (3.25)

to achieve this. If we restrict ourselves to mh0 . 200 GeV, this number becomes ≈ 10%.

We note here that the precise number in eq. (3.25) is subject to uncertainties of order

(20∼30)%, for example, due to finite corrections at Λ to δm2, δm′2 and f2.

We find that our theory does not really give the naive hierarchies of eq. (2.15). This is

because for large tan β, we need to have m′2 much larger than m2 (see eq. (3.8)), so that

we need to cancel this large m′2 with the b term in the minimization equation of eq. (3.9).

The Higgs quartic coupling λ also becomes large in this region, and fine-tuning from this

parameter, ∆−1|H4 , also becomes severe. For smaller tan β, on the other hand, the top

Yukawa coupling becomes larger, making fine-tuning from top loop, ∆−1|top, worse. This

is especially the case because the top radiative correction to m2 is proportional to y4
t (see

eq. (3.17)). Here the extra y2
t in addition to the naive y2

t comes from the fact that the

particle cutting off the top divergence in the standard model is the mirror top quark, whose

mass is proportional to yt: mq̂ = ytf . In the next section we present a theory in which the

contribution from the standard model top quark is canceled by the U(4) partner of the top

quark, in which case the logarithmic sensitivity of the top contribution to Λ is eliminated

and we can achieve further reduction of fine-tuning (or push up Λ further for a given ∆−1).

To assess the degree of success here, let us compare our theory with the standard model

(with the tree-level Higgs mass-squared parameter set to zero by hand). In the standard

model, the Higgs mass-squared parameter receives quadratically divergent contribution,

whose cutoff will in general be different from that of f2 in eq. (3.23). It is, therefore,

not possible to make a real comparison between the two theories. Nevertheless, if we

naively take the quadratic divergent part from the top loop, δm2
h = −(3y2

t /8π
2)Λ2, and

simply define the fine-tuning parameter for the standard model by ∆−1
SM = λv2/|δm2

h|, the

standard model gives

∆−1
SM ≈ 3.5%

(

5 TeV

Λ

)2

, (3.26)

under the same constraint of mh0 . 250 GeV (our definitions for m2
h and λ are V (h) =

m2
h|h|2 + (λ/2)|h|4). For mh0 . 200 GeV, this number becomes ≈ 2.3%.

Equations (3.25), (3.26) imply that our theory achieves about a factor 4 reduction in

fine-tuning. For Λ ≈ 5 TeV, the scale relevant for electroweak precision constraints, the

fine-tuning goes from “a few percent” to “better than 10%” for mh0 & 200 GeV (about

1 in 7 for mh0 ' 250 GeV). We also note that some of the factors included in the analysis

here, for example Nf in eq. (3.23), are often not included in literature. To compare the

result of our model with those of other models, we must take all these factors into account

appropriately.

4Some higher dimension operators, e.g. h†σahW a
µνBµν , require Λ ' 10 TeV if the coefficients are really

1. They are, however, expected to carry factors of, e.g., gg′ in front, in which case the bound on Λ is

somewhat weaker and of order several TeV.
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In the next section, we extend the minimal theory presented here to include the U(4)

partners of the top quark. This allows a further reduction of fine-tuning and/or a larger

cutoff scale, since the top contribution to the divergence of the Higgs mass-squared param-

eter is then canceled by these partners.

4. U(4)-invariant top sector

In this section we extend the top quark sector of the previous model to include the U(4)

partners of the top quark. Following ref. [4], we promote the left-handed top quark, q, and

its mirror partner, q̂, into the U(4)-invariant field:

Q = q(3,2, 1/6; 1,1, 0) + q̂(1,1, 0; 3,2, 1/6)

+ q′(3,1, 2/3; 1,2,−1/2) + q̂′(1,2,−1/2; 3,1, 2/3), (4.1)

where the numbers in parentheses represent gauge quantum numbers under (SU(3)A ×
SU(2)A × U(1)A) × (SU(3)B × SU(2)B × U(1)B). The q′ and q̂′ are new fields introduced

in this procedure. Defining the field representing the right-handed top quark, ū, and its

mirror partner, ˆ̄u, as

Ū = ū(3∗,1,−2/3; 1,1, 0) + ˆ̄u(1,1, 0; 3∗,1,−2/3), (4.2)

we can write the following U(4) (×U(4)′) invariant top Yukawa coupling:

Ltop = ytQŪΦ†, (4.3)

which contains the Yukawa couplings of eq. (2.4) when expanded in the “component” fields

of eqs. (4.1), (4.2). The new fields q′ and q̂′ in eq. (4.1) are made heavy by introducing

the conjugate fields q′c(3∗,1,−2/3; 1,2, 1/2) and q̂′c(1,2, 1/2; 3∗,1,−2/3) with the Z2-

invariant mass term

L = M(q′q′c + q̂′q̂′c). (4.4)

With the new top Yukawa coupling of eq. (4.3), the only U(4)×U(4)′ violating effect in the

top sector is the mass M of eq. (4.4). The contribution from the top quark to the Higgs

mass-squared parameter is thus cut off at the scale M , which we take ≈ ytf .

The calculation of radiative corrections from the Q and Ū fields to the Higgs mass-

squared parameter has been performed in [4]. In the present context, this translates into

δm2|top = − 3

8π2

y2
t M

2

y2
t f

2 − M2

(

M2 ln
y2

t f
2 + M2

M2
− y2

t f
2 ln

y2
t f

2 + M2

y2
t f

2

)

, (4.5)

and the top quark mass is given by

mt '
ytM

√

y2
t f

2 + M2
v sin β. (4.6)

The top contribution of eq. (4.5) can be written in the form

δm2|top = − 3

8π2
y2

t M
2 F

(

y2
t f

2

M2

)

, (4.7)
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where F(x) ≡ {ln(1 + x) − x ln(1 + 1/x)}/(x − 1) is a function which has the property

F(x) = F(1/x). For 0.5 . x . 2, this function takes values F(x) ' 0.3. We then find that,

in the parameter region 0.5 . y2
t f

2/M2 . 2, the top contribution in the present model,

eq. (4.5), is a factor of (2∼3) smaller than that in the previous model, eq. (3.17), for the

same value of f . The contribution to the fine-tuning parameter from top loop, which is

given by ∆−1|top ≈ m2
h0/(4|δm2|top| sin2β), is thus a factor of (2∼3) smaller than before.

The contribution from quartic loop, ∆−1|H4 , is the same and is given by eq. (3.20). The

fine-tuning parameter ∆−1 is given by the smaller of ∆−1|top and ∆−1|H4 , as in eq. (3.21).

We can now repeat the same analysis as in the previous model with the new ∆−1|top.

We find that under the constraint mh0 . 250 GeV, the largest value of f for a fixed ∆−1

is given by

fmax ≈ 930 GeV

(

20%

∆−1

)1/2

, (4.8)

which occurs when mh0 ' 250 GeV, yt ∼ λ ∼ 2, tan β ∼ 1 and M ' ytf . (For M 6= ytf

with the other parameters fixed, ∆−1 ∝ x/((x + 1)2F(x)) where x ≡ y2
t f

2/M2, so that

∆−1 changes only . 20% for 0.5 . ytf/M . 2.) For mh0 . 200 GeV, this number becomes

≈ 890 GeV, occurring at mh0 ' 200 GeV, yt ∼ λ ∼ 1.5, tan β ' 1.4 and M ' ytf . Since

Λ ≈ 2πf , we obtain the maximum value of the cutoff:

Λmax ≈ 6 TeV

(

20%

∆−1

)1/2

. (4.9)

For ∆−1 ' 10%, this reaches as high as Λmax ≈ 8 TeV. In terms of the fine-tuning

parameter, we find

∆−1 ≈ 28%

(

5 TeV

Λ

)2

. (4.10)

Compared with the standard model case, eq. (3.26), this is an improvement of a factor ≈ 8.

This is achieved because the top contribution to the Higgs mass-squared parameter is cut

off at the scale M ≈ ytf , without a logarithmic sensitivity to Λ.

5. Possibility of strong coupling at Λ

In previous sections we have assumed that the theory is weakly coupled at Λ. This has

ensured that radiative corrections to the U(4) × U(4)′-violating quartic terms from the

gauge, Yukawa and λ couplings are of order (1/16π2) ln(Λ/f). If the theory is strongly

coupled at Λ, i.e. η ∼ η′ ∼ 16π2, this property is not automatically guaranteed, since the

couplings may, in general, receive corrections of order e.g. ηg2/16π2, ηλ/16π2 ∼ 1 [10]. In

this section we discuss the possibility of making the theory strongly coupled at Λ.

Let us first consider the corrections from the coupling λ in eq. (2.7). We find that we

can rewrite the operator in eq. (2.7) as

LH = −λ1|H†
AH ′

A + H†
BH ′

B|2 − λ2|H†
AH ′

A − H†
BH ′

B|2, (5.1)

where λ1 = λ2 = λ/2. We then find that the first term preserves a U(4) global symme-
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try under which (HA|HB) and (H ′
A|H ′

B) transform as a fundamental representation, while

the second term preserves another U(4) symmetry under which (HA|HB) and (H ′
A| −H ′

B)

transform as a fundamental representation. Each of these U(4)’s is sufficient to protect

the mass of the Higgs fields h and h′, implying that the dangerous operators in eq. (3.1)

are generated only at order λ1λ2 ∼ λ2. This guarantees that these operators receive ra-

diative corrections only of order 16π2(λ/16π2)2 ln(Λ/f) ∼ (1/16π2) ln(Λ/f) even at strong

coupling (with the explicit breaking parameter λ kept to be O(1), of course). We find that

the collective symmetry breaking mechanism [2] is automatically incorporated in the single

operator of eq. (2.7) in our theory.5

We next consider the Yukawa couplings. The Yukawa couplings, collectively denoted

as y here, connect two fermions to a scalar field Φ or Φ′. At order y2, only the quadratic

terms in the scalar potential receive corrections. These terms, however, are necessarily

U(4)×U(4)′ invariant due to the Z2 symmetry and the global U(1)×U(1)′ symmetry. The

corrections to the Higgs mass-squared parameters, which come from the quartic terms in

the scalar potential, thus arise only at order y4. This ensures that the dangerous operators

receive corrections only of order 16π2(y2/16π2)2 ln(Λ/f) ∼ (1/16π2) ln(Λ/f) even at strong

coupling.

How about gauge interactions? At the renormalizable level, we can show that the dan-

gerous corrections do not arise, analogously to the case of the λ coupling. First, interactions

of the form Φ†ΦAµAµ generate only the quadratic terms in the scalar potential, but they

are always U(4) × U(4)′ invariant. The interactions linear in Aµ can then be decomposed

into two parts, as in eq. (5.1), each of which preserves a global U(4) symmetry that is suf-

ficient to protect the masses of h and h′. The dangerous operators thus receive corrections

only of order 16π2(g2/16π2)2 ln(Λ/f) ∼ (1/16π2) ln(Λ/f). This argument, however, may

not apply for higher dimension operators suppressed by Λ, which we expect to be there.

Showing that the theory can really be made strongly coupled at Λ, therefore, requires a

careful analysis of all these corrections. Here we do not pursue this issue further, leaving

it for future work [13].

The possibility of strong coupling at Λ is particularly interesting because the relation

f ≈ f ′ ≈ Λ/2π would then be naturally understood in terms of naive dimensional analy-

sis [14]. It also leads to more possibilities for an ultraviolet theory above the scale Λ. A

closer study of this issue is warranted.

6. Phenomenology

In this section we discuss the phenomenological implications of our models. We mainly

focus on collider signals, since the cosmological aspects of the models are similar to what

were discussed in literature (see e.g. [4, 10, 15] and references therein). The only point

5It should not be viewed that the operator in eq. (2.7) is obtained by setting the coefficients of the two

operators in eq. (5.1) equal by hand. Because of the “chiral” Z2 symmetry, (HA|HB) ↔ (HA|HB) and

(H ′
A|H

′
B) ↔ (H ′

A| −H ′
B), these coefficients are necessarily equal, λ1 = λ2, so that the operator of eq. (2.7)

is really a single operator.

– 15 –



J
H
E
P
0
1
(
2
0
0
6
)
1
2
6

worth mentioning is that our models provide a natural way to lift the mirror photon mass

because SU(2)B × U(1)B is completely broken in the vacuum. This relaxes many of the

cosmological constraints, related to the excess in radiation energy density coming from

the mirror sector and to the production of proto-Galaxies from the dark matter mirror

baryons.

Regarding collider physics, our models are quite distinct. At low energies the “visible”

particle content of both models is that of a general two Higgs doublet standard model.

At higher energies additional singlet scalar particles are present. In the model with the

extended top sector there are new fermions charged under the standard model gauge group

with masses of ≈ (1 ∼ 2) TeV, but these particles are absent in the minimal model of

section 2.

In general we are interested in parameter regions where no severe fine-tuning is re-

quired. In these regions the lightest Higgs boson is relatively heavy, with masses of

O(150 ∼ 250 GeV), allowing for an easy detection through WW decays. However, the

detection of all five Higgs bosons at the LHC is, in general, non-trivial (see e.g. [16] for

recent reviews). Thus, without detecting the other mirror particles or singlet fields, our

model would look simply like a two Higgs doublet standard model or perhaps even just the

standard model.

It is important to consider whether one can have additional signals at the LHC that

allow to distinguish the models from a simple two Higgs doublet standard model. In the

model of section 4, there are colored fermions of masses ≈ (1∼2) TeV, which can be found

easily at the LHC. In the model of section 2, however, the detection of new physics beyond

the two Higgs doublet standard model will, at best, be a difficult task, because all the new

particles are singlet under the standard model gauge group.

The simplest possibility would be to look for invisible decays of the Higgs bosons into

mirror fermions [17]. The relevant vertices, however, arise only from the mixing between

the neutral scalars of the two sectors, so that they are all suppressed by powers of v/f or

v/f ′. The most important decay channels would be to the mirror bottom quark, which

is the heaviest mirror particle available below the Higgs boson masses. The branching

ratios to these invisible decay modes, however, are still too small to be observed at the

LHC, which requires the product of the Higgs production cross section normalized to the

standard model one and the branching fraction into the invisible channel to be about 0.1

or larger [18].

The situation is similar in pseudoscalar and charged Higgs boson decays. For the

pseudoscalar case, the vector boson fusion channel is not available because it does not

couple to the gauge bosons at tree level. This makes it almost impossible to detect the

invisible width because of the standard model background. For the charged Higgs boson

case, one might try to tag the associated production of a visible charged particle and

invisible fields. The decay modes of the charged Higgs boson into something visible and

mirror particles, however, proceed only through higher dimension operators and are highly

suppressed. The other possibility would be to look at the cascade of a charged Higgs into

mirror particles through a neutral Higgs, for example as H+ → Wh0 → l+missing energy,

where H+ is produced in the standard way through gb → tH+ [19]. This requires, however,
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to fully reconstruct the top quark hadronically, and a large standard model background

from gg → t̄t with one top quark decaying semileptonically makes the observation of these

“semi-invisible” decay impractical [20].

A possibility of distinguishing our model from a simple two Higgs doublet standard

model may come from the decay of the radial excitation modes of Φ and Φ′, which have

the masses
√

2ηf and
√

2η′f ′. Since the light Higgs boson has mixings with these modes

of O(v/f), a heavy radial mode can be produced instead of a Higgs boson [21] with a

production cross section a factor of ' v2/f2 below that of the Higgs boson. The radial

modes have couplings of O(f) to a pair of the light Higgs bosons. Thus, after being

produced on-shell, the radial mode can decay into two light Higgs bosons, which then

decay into standard model particles. This may be the dominant decay of the radial modes;

the only competing ones would be decays into a mirror top or gauge boson pair, which

could be kinematically forbidden because all of these particles have masses of O(f). We

expect that the masses of the CP even Higgs bosons are above the ZZ threshold, so one

can look at the light Higgs bosons, which are produced by the decay of a radial mode

and decay into ZZ and WW pairs. A rough estimate, however, shows that the channel

in which one Z and one W decay leptonically does not have a large event rate. Thus,

even though the standard model background is small, it is difficult to observe this channel

(unless the mass of the radial mode is somewhat unexpectedly small). One may also look

for (one of) the Higgs bosons decaying either into b or τ pairs, which increases the event

rate. This, however, also increases the standard model background, so that a more detailed

analysis is needed to see if this mode is useful. We also note that if η and η′ are of order

unity or somewhat larger, the radial modes become (much) heavier than a TeV, and the

detection of these modes at the LHC becomes almost impossible. Following the discussion

after eq. (3.23), this may be the case for smaller fine-tuning.

At a linear collider, invisible decays of the Higgs bosons may be accessible. The

branching ratios, however, are not so large ≈ 10−3 for the associated production with a Z

boson, ZH → ll + missing energy, so that it is not clear if this can be detected. Another

possible channel is to produce a pseudoscalar associated with a neutral Higgs boson, and

look for an invisible decay of the pseudoscalar Higgs boson, which has a branching ratio of

order (v/f)2. The precise study of the masses and couplings of the Higgs bosons may also be

used to discriminate between our model and the simple two Higgs doublet standard model.

Finally, precision electroweak constraints are easily satisfied by construction [4]. In the

model of section 2 all particles beyond those in the two Higgs doublet standard model are

singlet under the standard model gauge group, and the effects on the precision electroweak

observables are small. The contributions from heavy radial modes, for example, come

only through mixings with light Higgs bosons, which induce an additional logarithmic

contribution which effectively appears as arising from two very heavy Higgs bosons but

with the coefficients suppressed by factors of O(v2/f2). The contributions from vector-like

fermions in the model of section 4 are also small, as they have SU(2)L × U(1)Y invariant

masses of order (1∼2) TeV. Dangerous operators induced by ultraviolet physics are either

suppressed by assumed symmetries or, if it is not possible, as in the case of the operator

for the S parameter, are suppressed by our rather high cutoff scale of (5∼8) TeV.
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7. Conclusions

In this paper we have constructed a theory in which radiative corrections to the quadratic

part of the potential are constrained to be symmetric under a global U(4)×U(4)′ symmetry

due to a discrete Z2 symmetry, while the quartic part does not possess this symmetry at all.

The theory is weakly coupled at the cutoff scale Λ, and has a simple structure where the two

Higgs doublet standard model is simply “twinned” due to the Z2 symmetry. The two Higgs

doublets have a quartic coupling at tree level, while their squared masses are generated

only at order f2/16π2, where f is an order parameter for the U(4)×U(4)′ breaking, which

is supposed to be a factor of 4π smaller than Λ. This setup, thus, potentially allows us to

have a large hierarchy between the electroweak VEV, v, and the cutoff scale.

We have carefully studied fine-tuning in this theory and found that we do not obtain

a hierarchy as large as what may naively be expected, Λ ' 4πf ' 16π2v. The theory,

however, still allows a reduction of fine-tuning by a factor of ≈ 4 compared with the

standard model, even in the minimal version, which allows us to push up the cutoff scale

to about 5 TeV without significant fine-tuning (∆−1 ≈ 14%). This is almost enough to

solve the little hierarchy problem, implied by the mismatch between the stability of the

electroweak scale and the constraints from experiments. With the U(4)-extended top quark

sector, we can further reduce fine-tuning to the level of 30% for Λ ≈ 5 TeV, or if we allows

a mild tuning of order 10% the cutoff scale can be as high as Λ ≈ 8 TeV. In general, the

theory prefers a heavy Higgs boson, mh0 ' (150∼250) GeV, and small values for the ratio

of the VEVs for the two Higgs fields, tan β ' (1∼2).

Our theory provides an example of a potentially embarrassing situation at the LHC.

While the theory is not significantly fine-tuned, the LHC may just see the two Higgs

doublet standard model, and may not find any new physics responsible for cutting off the

divergences of the Higgs mass-squared parameter. This occurs in the model without extra

vector-like fermions. All quadratic divergences in the Higgs mass-squared parameter due

to standard model loops are canceled by fields that are singlet under the standard model

gauge group. The deviations from the simple two Higgs doublet model due to these singlet

fields can be very small at the LHC. We have discussed several possible processes that may

be able to discriminate our model from the two Higgs doublet model at the LHC and at a

linear collider. It will be interesting to study these processes in more detail.

Possible physics above the cutoff scale Λ is unknown. We have discussed the possibility

of extending the theory to the strongly coupled regime at Λ. It would be interesting to

pursue possible ultraviolet physics that reduces to our theory below the scale of Λ ≈ (5∼
8) TeV.

Note added. While completing this paper, we received ref. [22], which also addresses

the little hierarchy problem in the context of the two Higgs doublet standard model.
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